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Stabilization in the presence of uncertaiWt_ is a fundamental requirement in the design of feedback compen-
sators for flexible structures. The search for the largest neighborhood around a given design plant for which a

single feedback controller produces dosed-loop stability can be formulated as an Hoo control problem. It has been
shown that the use of normalized ¢oprime factor phmt dkncription& where the plant perturbations are defined
as additive modifications to the coprime factors, leads to a dosed-form expression for the maximal-neighborhood
boundary allowing optimal and suboptimal Hoo compensators to he computed directly without the usual -y-
iteration. This paper describes an application of normalized coprime factor staln'lizati_ theory to the computa-
tion of robustly stable compensators for the NASA Control Structures Interaction Evolutionary Model. Results
indicate that the suboptimal version of the theory has the potential of providing low authority compensators
that are robustly stable for significant regions of variations in design model parameters and additive unmodeled
dynamics.
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= minimal state-variable realization for G(s) t
= state-variable realization of 25-mode model u (s)

in phase 0 simulation Wl (s), W2(s)
= state-variable realization for truncated

system AG(s) in phase 0 simulation y(s)
= system matrix for perturbed phase 0 Y

simulation Ymi_

= output matrix in state-variable realization of (&o),

perturbed phase 0 system

= upper linear-fractional u'ansform (8()i
= lower linear-fractional transform

= p x m transfer function matrix with AP
real-rational function elements A G (s)

= G(s) after augmentation by loop-shaping AM_', AN
functions A M A , A _I A

= 50th-order design model transfer-function
mall'ix _, EA

= perturbed plant

= transfer function for perturbed G(s) e,_ax
= Gs(s) after augmentation by loop-shaping (i

functions
= Hardy" space of complex-valued functions (_t,)i

F(s) of a complex variable s that are analytic

and bounded in the open right-half plane in Z

the sense that sup{IF(s)l : Re s > 0} < oo
= greatest lower bound b(A)

= identity matrix of appropriate order q (A)

= feedback compensator for G(s) biG(s)]

= feedback compensator for GA (S) ¢1>
= positive real parameters employed in Eq. (26) co

= factors in a left-coprime factorization of G(s) coi

= left-coprime factors for GA(s)
(_op)i

= left-coprime factors for GA_ (s) _2
= generalized plant la'ansfer-funetion matrix

= all asymptotically stable, proper, rational
transfer-function matrices

= Laplace transform variable
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Superscripts

T
-1

Norms

II. I1_
II. IIH

= least upper bound

= time variable, t _ [0, oo)

= Laplace transform of system input u (t)
= transfer-function matrices used for loop

shaping

= LapLace transform of system output y(t)

= positive real number, 1/e

= positive real number, 1/em_
= random numbers uniformly disa'ibuted

within [-0.01, 0.01], i = 1..... 9

= random numbers uniformly distributed
within [-0.1,0.1], i = 1..... 9

= generalization perturbation

= perturbation to G(s)

= perturbations to left-coprime factors of G(s)

= perturbations to left-coprime factors of
GA(s)

= positiverealnumber usedas a robustness
measure

= largestvalueof e

= damping ratiofortheithmode ofthephase0
model,i = I.....25

= perturbedvalueofdamping ratio_,
i=I .....9

= diagonalmatrixof damping ratiosof

25-mode phase0 simulationmodel

= largestsingularvalueof constantmatrixA
= smallestsingularvalueof constantmatrixA

= largestHankel singularvalueof G _ RH_

= mode-shape matrix

= frequency, rad/s
= frequency of ith mode in phase 0 model,

rad/s

= perturbed values of w_, rad/s
= diagonal matrix of frequencies of 25-mode

phase 0 model, rad/s

= matrix transpose
= matrix inverse

= matrix transpose with argument s replaced

by -s, e.g., Ar*(s) = Art (-s)

= Hoo norm: IIG(s)lloo = sup,,bIG(jw)]
= Hankel norm: llG(s)lln = biG(s)]
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Introduction

N the design of controllers for physical systems, there almost
always has to be some trade-off performed between design model

accuracy and mathematical complexity. I The more accurate anal-

ysis models often require computational time that is too excessive
to qualify them as design models for control purposes. In practice,

high-order nonlinear models are typically linearized about some

operating condition and have their model order reduced to produce

design models that conform to computational limitations or com-

pensator implementation constraints. These practicalities introduce
modeling errors in the form of unmodeled dynamics that must be
accounted for in the controller design process. Additionally, param-

eters in the design and analysis models are not always accurately
known and can cause destabilizing effects if parametric uncertainty

is ignored or improperly treated.
The foregoing considerations are especially critical in the de-

sign of controllers for flexible space structures. 2'3 Space structure

controller design models are generally obtained through some order

reduction procedure applied to a high-order analysis model obtained
from finite element techniques. The order reduction process essen-
tially deletes a portion of the finite element model to produce a

lower order controller design model. Although no longer contained

in the design model, the unmodeled dynamics (represented by the

deleted portion) can still be influenced by control inputs. Care must
be taken in the design process so as to avoid control and observation

spillover effects 3 that destabilize the unmodeled dynamics. Also,
the high-order model contains parametric uncertainties in natural

frequencies, damping ratios, and mode shapes and slopes that get

passed through to the design model. A fundamental requirement of

control law design for flexible space structures is then the attain-

ment and preservation of closed-loop stability in the presence of

unmodeled dynamics and parameter uncertainties.
Uncertainties may be viewed as perturbations about a nominal

design model. If a single compensator stabilizes the nominal plant
and, in addition, all systems within some neighborhood of the plant
generated by the perturbations, then the compensator is said to ro-
bustly stabilize the overall family of systems.* The search for the

largest neighborbood around a given design plant for which a single
controller produces closed-loop stability can be formulated as an

Ho_ control problem. Glover and McFarlane 5'6 show that the use
of normalized coprime factor plant descriptions, where the plant
perturbations are defined as additive modifications to the coprime
factors, leads to a closed-form expression for the maximal perturba-
tion radius. The maximal radius can be computed directly in terms of
the design model, thus allowing optimal and suboptimal robust com-

pensators to be found without the usual },-iteration of Hoo design.
This paper describes an application of the Glover-McFarlane the-

or3, to the robust control of a simulated structure configured to have

many of the dynamical characteristics and controller design diffi-
culties associated with flexible space structures. We begin with an

overview of the robust stabilization problem specialized to normal-

ized coprime factor plant descriptions. These theoretical results are

then applied to the computation of robustly stable compensators for
a computer simulation of the phase 0 version of the NASA Control
Structures Interaction (CSI) Evolutionary Model. 7

Robust Stabilization Problem for Norm_tiT.ed Coprime
Factor Plant Descriptions

Let G(s) represent a p x m transfer function matrix and AG(s)
denote some perturbation to G(s), both with real rational elements.
One method of modeling plant uncertainty involves the use of co-
prime factorizations wherein G is written in coprime factor form

and the system perturbations defined in terms of perturbations to

the respective coprime factors. For a left-coprime factorization

G = M-iN (1)

the perturbed system G,, is given by

Ga = (h_/+ Ab_)-t(/_ " + A/V) (2)

with

ZXG = (A_, ,,,_] _ PJt_ (3)

d......./G A

Fig. I Feedback control of generalized uncertainty model

This uncertainty model can be represented as an upper linear-
fractional transformation

GA = _'u(P, AP) = P22 -'I-P2,AP(I - Pt,AP)-I P,2 (4)

where det(l- Pn AP) _ 0 and

LP 'Ie"J L -'I J
(5)

with admissible perturbations defined as

ZxP = [A_:, -ZX_] _ Pdl= (6)

The foregoing (P, AP) uncertainty-model structure and the pro-

tess of using feedback to stabilize and control P in the presence of

Ap can be represented by the block diagram shown in Fig. 1. Em-

ploying Fig. 1, a robust stabilization problem can be posed. Viewing
Gt, as a family of perturbed models for a given class of perturba-

tions Ap, seek a single compensator K(s) that stabilizes not only

G (i.e., Ga with AP = 0) but all members of the G,, family. For P
and A P given by Eqs. (5) and (6), the following robust stabilization
theorem is available. 6

Robust stabilization theorem. For any Pz_ of P given by Eq. (5)

with stabilizable and detectable state-variable realization, the com-

pensator K(s) of Fig. 1 stabilizes Ga = _',(P, AP) for all ad-
missible Ap such that IIAPII_ < E if and only if (i) K stabilizes

Pz2 and (ii) 115:L(P, K) I1= < e-l, where the lower linear-fractional
transformation

_:L(P, K) = Pn + PnK(I - P_.K)-I P2t

The parameter e in the theorem canbe viewed as a measure of the
level of robust stability for a given closed-loop system. The problem

of finding the largest level of robust stability is termed the optimal
robust stabilization problem and is formally stated as follows.

Optimal robust stabilization problem. Find the largest strictly
positive number E =¢mx such that, for all admissible AP satis-

fying IIAPII_ < e, there exists a single controller that stabilizes

5:u(P, ZXP).
From the robust stabilization theorem,

E_ = (infll:Y_.(P, K)llo_) -1 (-8)

where K is chosen from all controllers that stabilize t'22. Com-

putation of _= thus involves the solution of an H= optimization
problemS'9; that is, find

infllSrL(P, K)II_ = y,,_. (9)
g
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over all K that stabilize P22. Finding Faun typically involves an
iterative procedure to determine the smallest F (= Yuu,) such that
the suboptimal robust stabilization problem

infll_L(P, K)lloo _< Y (10)
K

is solved. The solution of the optimal robust stabilization problem for

the coprime factorization uncertainty class can also be approached

in a similar manner; however, if the coprime factors of G are nor-
malized in the sense that

:/(s)[:'(s) + _(s)lCr(s) = / (11)

then the F-iteration procedure can be completely avoided and the
computational effort greatly reduced. It can be shown s.6 that, for

the problem of designing a controller K that robustly stabilizes a

plant G written in normalized left-coprime factor (NLCF) form, the

maximum robust stability margin is

e,_ = (y,_)-_ = {1 - I1[//,2_']ll_}I/2 > 0 (12)

where the subscript H refers to the Hankel norm. I°

State-variable realizations for the suboptimal compensators with

F > F=m can be found in Refs. 5 and 6. Theory and state-variable

algorithms to solve the optimal problem with F = y_, can be found
in Ref. 10.

Loop Shaping Within NLCF Robust
Stabilization Structure

Since G =/14-1/{/is a NLCE

l[ K(] -- G_C)-I K(I - _:)-'_111= (1 - GK) -t (I - GK)-'G J It= -< y (13)

Only a certain class of weighting matrices is allowed if the exact-

solution advantage enjoyed by the NLCF robust stabilization prob-
lem is to be preserved. 6

Let W=(s) and Wz (s) be system precompensator and postcompen-
sator matrices, respectively, and define an augmented plant Ga (s) by

GA(S) = W2(s)G(s)Wl(s) (14)

Performing a NLCF robust stabilization design with G replaced

by GA yields a dynamic compensator Ka(s) robustly stabilizing
G,_. Figure 2a gives a block diagram illustrating this loop-shaping
procedure. Simple block manipulation yields Fig. 2b, which shows

that the corresponding compensator K to be applied to the unshaped
plant G is

K (s) = Wl (s) Ka (s) W2 (s) (15)

We then have

= (l

= o...>-,.,o.,L
= _f w2(/- GK)-_W2-_ W2(; - GK)-_GWt =

(16)

which indicates a weighting configuration that can be applied to the

elements of Eq. (13) if the exact-solution structure is to be preserved.

In general, if other weighting configurations are desired, the normal

H_ y-iteration procedure is required.

a)

[ I

b)

Fig. 2 Loop-shaping procedure: a) compen_tor for shaped plant,
(is(s) and b) equivalent compensator for unslmped plant, GO).

Robust Stabilization of Phase 0 Evolutionary Model
In this section, the robust stabilization theory for a plant modeled

in NLCF form is applied to produce compensators for the control
of a computer model of a laboratory structure having many of the
characteristics and design difficulties associated with flexible space
structures.

Description of Phase 0 Model

The CSI Evolutionary Model is a laboratory testhed concept in
which a sequence of testbeds is evolved with each new facility hav-
ing more challenging dynamics and control characteristics than the
previous. The testbeds are to be designed and constructed at the

NASA Langley Research Center for the experimental validation of
control techniques and integrated design methodology developed
under Langley's CSI program) l The phase 0 model was the first
testbed to be constructed under this program. Unfortunately, the

phase 0 model is no longer in existence at Langley. However, many
useful studies were performed using the phase 0 modeL t2-14 and its
data base has been archived and is still available for this and future

studies. A schematic of the phase 0 structure is shown in Fig. 3 and
a detailed description may be found in Ref. 7.

The phase 0 structure consisted of two vertical towers and two

horizontal booms attached to a central 62-bay truss main section
with each bay a 10-in. cube. The structure was suspended from
the laboratory ceiling by springs and two long cables designed to
minimize the interaction between the suspension and the slxuctural
modes. A laser source was mounted at the top of the taller vertical
tower and a 16-ft reflector with a mirrored surface mounted on the

other tower. The laser beam could be reflected by the mirrored sur-
face onto a detector surface above the reflector. The total structural

weight was 741 lb. Eight proportional bidirectional gas thrusters
(air jets) provided the input force actuation, whereas eight nearly
collocated servo accelerometers provided output measurements.

Global line-of-sight pointing studies have been performed using
the laser targeting system. 14 This study will only be directly con-
cemed with vibration suppression about a given operating point and
will not treat laser targeting as such. However, vibration suppression
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z

Fig. 3 Schematic of phase 0 evolutionary model.

of the laser tower modes will be a critical part of our design require-

ments since damping of the laser tower structure was a troublesome
issue in previous laboratory tests.

The phase 0 model had six nonstructural modes (due to suspen-

sion) and many significant elastic modes. The NASTRAN finite
element model consisted of 3560 degrees of freedom. 7 A total of

86 modes with frequencies below 50 Hz were selected as a truth or

evaluation model. A reduced-order model consisting of 25 modes,

selected from the 86 modes through a controllability and observabil-

ity analysis, was used for the controller design model. Table 1 shows

the frequency range of these 25 modes in hertz. Frequencies of the
first six pendulum/suspension modes, brought about by the cable

suspension in a 1 g environment, range from 0.147 to 0.874 Hz. It

was observed in the laboratory that the true damping ratios probably

lie between 0.1 and 1.0%. For simulation and controller design pur-
poses, previous theoretical studies with experimential validation t2

have demonstrated that a 0.5% nominal value adequately describes

modes below 2 Hz to within an accuracy of 10%. Frequencies be-
low 2 Hz in the finite element model can be taken to be accurate to

within 1%. 14

Using data from the finite element analysis, a dynamical mathe-

matical model in the modal coordinate system can be constructed.
A 50th-order state-variable realization of this model (with transfer

matrix denoted by Gf ) will appear as (Af, B/, C f, Dr), where

[0 ,] [0]Af = __2 --Z Bf = _Y

C t" = _0, _]Af D/= _t_ r (17)

with

_2 = diag(o_l, o>2..... a_) (18)

Z = diag(2(ztol, 2(2oJ2 ..... 2(25a,_) (19)

and @ is an 8 x 25 matrix of mode shapes. In Eqs. (18) and (19), col

denotes frequency and ¢i = 0.005 damping ratio for i = 1..... 25.

Eigenvalues of Af are given in Table 1. Since the damping ratios
are small, the frequencies in radians per second are closely approx-

imated by the imaginary parts of the eigenvalues.
In flexible structures, higher frequency modes are more difficult

to accurately measure and compute. For the phase 0 structure, the fi-

nite element model provided reasonably accurate natural frequency

and damping values for modes below 2 Hz. However, higher fre-

quency modes, beginning with the 10th mode at 2.3 Hz, are not

accurately known, t4 In this design, only modes with frequencies

up to 14 rad/s are used to form the compensator design model and

Table 1 Phase 0 model open-loop system characteristics

Eigenvalue Frequency,
Mode no. (Re, +Ira) Hz

1 (-4.622 x 10-3. 9.243 x 10-1) 0.147
2 (-4.682 x 10-3, 9.365 x 10-_) 0.149

3 (-4.876 x 10-3, 9.752 x 10-1) 0.155
4 (-2.294 x 10 -2, 4.587) 0.730

5 (-2.349 x 10 -2, 4.698) 0.748
6 (-2.746 x 10 -2, 5.491) 0.874
7 (-4.629 x 10 -2, 9.258) 1.474

8 (-5.460 x 10 -2, 1.092 x 10) 1.738
9 (--5.916 x 10 -2, 1.183 x 10) 1.883

10 (--7.230 x 10 -2, 1.446 x 10) 2.301
II (-8.918 x 10 -I, 1.783 x 10) 2.838

12 (--1.261 x 10 -I, 2.522 x 10) 4.015
13 (--1.267 x 10 -I, 2.534 × 10) 4.032
14 (-1.321 x 10 -I, 2.642 × 10) 4.206

15 (--1.380 x 10 -I, 2.760 x 1(3) 4.392
16 (--1.728 x 10 -I, 3.457 x 10) 5.501

17 (-1.941 x 10 -I, 3.883 x 10) 6.180
18 (--1.958 x 10 -I, 3.915 x 10) 6.231

19 (--2.033 x 10 -I, 4.066 x 10) 6.471
20 (--2.095 X 10 -I, 4.191 X 10) 6.670
21 (--2.316 X I0 -I, 4.632 X 10) 7.372

22 (--2.605 X 10-1,5.211 X 10) 8.293
23 (--2.817 X 10 -I, 5.634 X 10) 8.966

24 (--3.922 X 10-1,7.845 X I0) 12.49
25 (--5.294 X 10-l, 1.059 X 102) 16.85

10 3

10 2

101

m_ 10 0

_10-1

10-2

I0"3

10-4

I0"5
10"1

J ///_\ ,...
/

/
i-

//
//

..'_-'g[ Gq_)l

....... ,o'o _o_
Frequency, rad/sec

Unweighted open-loop nominal systemG(s).Fig.4

10 2

modes with higher frequencies are used to simulate unmodeled dy-
namics. Modes above mode 9 are truncated from the 25-mode model

and accounted for as an additive uncertainty in the design process.

The matrix G/now appears as

GA=Gf =G+AG (20)

G = C(slls - A)-tB + D (21)

and

AG = Ct (s/32 - A,)-IBt + D, (22)

Numerical data for (A, B, C, D) and (At, B,, Ct, Dr) are given in

Appendix C of Ref. 15. Figures 4 and 5 show individual freque_csr

response (sigma) plots for G and AG.

Design Approach
A controller achieving robust vibration suppression is the goal of

this study. The control design should increase the damping of all the

pseudo rigid-body (suspension) and structural modes of the design

model G. The closed-loop system must also possess stability ro-

bustuess with respect to unmodeled structural modes, of which AG
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10 3

-_ i0 !
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I ! t

7 f
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F_lue_y. ra_iec

Fig.S Tnmeated systemAGls).

10 3

from F_x].(22) is taken as a representative sample, and to the para-
metric uncertainties generated by the expected errors in frequency

(1%) and damping ratios (10%) in the design model.
In the application of the NLCF robust stabilization theory to

follow, stability robustness to additive unmodeled dynamics is in-

corporated by use of the weighting matrices in Eq. (14) and ana-

lyzed through examination of closed-loop conditions for stability
robustness, 8

IIAGK(I- GK)-XlI_ < I (23)

or themore conservativesufficientconditionforEq. (23),

6[AG(s)]8[K(I - GK)-i(s)] < I (24)

for s = jw, w _ [0, o_). The design parameters in the weight-
ing matrices are adjusted so that condition (23) is satisfied with a
margin of at least 40% and no destabilization of the closed-loop sys-

tem is experienced from the expected parametric variations in the

open-loop design system. Thereafter, within the remaining freedom
allowed, the parameters are adjusted to achieve the largest increase
in damping in the suspension and structural modes of G(s).

Loop-Shaping Procedures
Optimal compensator and centralsuboptimal compensatorswere

computed. Both compensators, when applied to G in the feedback

fashion of Fig. 2, enhanced the stability of G but grossly violated

spillover condition (23) with A G given by Eq. (22). Failure to satisfy
condition (23) was primarily caused by the lack of free parameters
for adjustment in the algorithms and the fact that G(s) is not strictly

proper, in which case both optimal and suboptimal compensators

will not be strictly proper.

It was found that the spillover problem could be resolved through
incorporation of loop-shaping functions of the form (14). Weighting
functions employed were

W_ (s)= Is (25)

and

Wx(s) = k/(s + a)' Is (26)

The positive real parameters a, i, and k are adjusted from observation
of condition (24) with the compensator (15). The parameter a is
chosen such that a plot of the inverse of 6[K(I - GK)-l(jw)] vs.
w _ [0, oo) breaks upward before co = 14 tad/s, the approximate
frequency at which the AG dynamics become predominant. The

parameter i roughly controls the slope of the upward break and was
taken as i = 1 or i = 2. The quantity k adjusts the magnitude of

W2(s) and, in the studies to follow, ranged between 0.08 and 4.0.

Increasing the parameter k moves the closed-loop eigenvalues of the
controllable modes of the design model further into the complex left-

hand plane but also increases the potential of destabilizing spillover
into the modes of A,.

Analysis of Robustness to Structured Pertur_tions
Values of natural frequency are assumed to be accurate to within

1% and values of damping ratio to within 10% for modes 1-9 below
2 Hz. t2'14In order to evaluate the compensators for perturbations in

frequencies and damping ratios within these ranges, the frequencies
coi and damping ratios (i in the A-matrix of the nine-mode design

model were replaced by perturbed values (COp)iand ((v)i given by

(wp)i = wi + (&o)icoi (27)

and

((v)i= Ci+ (SC)i_'i (28)

for i = 1..... 9. In Eqs. (27) and (28), (&o)i and (SC)i,

i = 1..... 9, are random variables uniformly disaibuted within
[-0.01, +0.01] and [-0.1, +0.1], respectively. The new perturbed
system matrix is denoted by As. If G(s) is given by Eq. (21), the

transfer matrix for the perturbed system is

G_(s) = Cs(slis - As)-i B + D (29)

where

C_ = C A-I As (30)

to reflect acceleration measurements.

With

GA(S) = W2(s)G(s)Wl(s) (31)

G_(s) = W2(s)Ge(s)WI(s) (32)

find normalized ieft-coprime factors such that

G,4(s) = (_,0-1_'A (33)

(34)

Define

av = [,',if,,,-aSLl (35)

where

AMA = "_A -/_Tta (36)

Ag'a = '_A - NA (37)

If IIAPllo_ < ca, then the compensators, in addition to stabiliz-

ing G(s), also stabilize the perturbed system. No compctatio_ are

made to measure the effect of the parametric pemwbations on the

unperturbed closed-loop damping ratios.

Compensator Design
Optimal Compensator

It was found x5that, since the optirra_ compensatorwas not strictly
proper, i = 2 provided faster rrJil-off and best allowed the satisfac-

tion of conditions (23) and _24). A representative optimal compen-

sator used (k, i, a) = (Orl, 2, 0.5). After scaling each channel of G
by 0.1/(s + 0.5) 2 , it was found that eA,_ = 0.6749.

Over 2000 realizations of Eqs. (27) and (28) were computed for

the optimal compensator and the corresponding AP transfer matri-
ces [given by Eq. (35)] tested for satisfaction of IIAPHoo < CAlm.
No violations were encountered. Values of IIA P Ilooranged between
0.1728 and 0.5888 with a mean of 0.4627 and standard deviation of

0.0726. A frequency analysis of condition (23) indicates that mode

20 (the laser tower mode) at 41.9 rad/s (6.7 Hz) is the mode most
likely to exlx rience destabilizing spillover. This property has also

been observed experimentally in previous studies. 12 The analysis

also indicated an additive stability robustness margin of about 97%.
This ultraconservative margin for additive stability robustness was
forced by the desire to also have a compensator that guaranteed sta-

bility robustness to expected parametric uncertainties in frequencies
and damping ratios. For the same values of/and a, ifk is increased
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Table 2 Eigenvalues of KA(s) compensator
system matrix

Complex
Real (Re, q-lm)

-0.1 (multiplicity 8) (-2.296, 4.230)
-0.1612 (-2.366 x 10-I, 4.690)
-0.2945 (- 1.859, 5.232)
-0.4769 (-2.339, 8.859)
-1.8518 (-3.535, 9.659)
-3.1977 (-1.408, 1.103 × I0)
-6.8123

Note: Reflects suboptimal studies; (k. i, a) = (0.5, 1, 0.1),

eamax = 0.6670, g,t = 0-9_'Amax-

io I

io o

I0-1

m 2

lO -3

tO -4

10 -5

10g -1

/--- _( K (jo)]

IIP\

k._ o[K(/o)] ",
"xx "

10 0 10 i l0

Fr_lUency,raa/s_.

Fig. 6 Suboptimal compensator K(s).

to 2.0, then a more reasonable margin of 43% is obtained. How-
ever, k = 2.0 produced eA=_ = 0.4856, and this reduced value of

e,_,_ leads to violations occurring greater than 40% of the time in

the random tests for IIAPIIoo < sam. For fixed values of/and a,

decreasing k increases ea=_ and decreases IlAPIIoo. A value of k
allowing a sufficiently wide "gap" between the two quantities is re-

quired when specific ranges of parametric variations are considered.

The (0.1, 2, 0.5) compensator, when applied in the closed-loop

manner of Fig. 2 to the 50th-order system Ga, leaves the open-

loop eigenvalues essentially unchanged except for modes 1-3.
Optimal compensators with better stability augmentation can be
obtained at the expense of violations in robust stability due to para-

metric variations in frequencies and damping ratios of the design
model.

Suboptimal Compensators

Central suboptimal compensators computed from strictly proper
systems Ga(s) are strictly proper, whereby lower order weighting

functions (than those used in the foregoing optimal compensator

studies) can be employed without difficulty in satisfying the addi-
tive robustness conditions. Suboptimal compensator studies x5 were

performed using i = 1 and ea = 0.9ea=_ from which a representa-

tive result had (k, i, a) = (0.5, 1, 0.1). After scaling each channel

of G by 0.5/(s + 0.1), it was found that ta,,_ = 0.667. Table 2 gives

the eigenvalues of the Hurwitz system matrix from a state-variable
realization of Ka (s). The order of the final compensator K is 34.

Figure 6 shows singular-value bounds for the compensator K (s).

Again, over 2000 realizations of Eqs. (27) and (28) were com-

puted for the suboptimal compensator and the corresponding AP
transfer matrices tested for satisfaction of IIAPII_ < ea=,_ with no
violations encountered. Values of IIA p Itoo ranged between 0.0561
and 0.5595 with a mean of 0.2798 and standard deviation of 0.0907.

The expected variations in frequency and damping ratio of 1 and

10%, respectively, are apparently close to the upper bounds for
robust stability for/c = 0.5. Increasing the variations to 1.5% in

frequency and 15 % in damping ratio causes violations about 6% of
the time.

Table 3 Closed-loop eigenvalues of design model controlled by
compensator K(s)

Open-loop Eigenvalues Damping ratio,
mode no. (Re, :t:Im)

I a

2 a

3 (-2.610 x 10-1, 8.872 x 10-1)
4 (--5.216 x 10-I, 4.620)
5 (-1.767 x 10-1, 4.671)

or

(-9.510
6 (--4.760

7 (-6.248
8 (--9.416
9 (-4.921

10 (-8.062
1i (-- 1.056

12 (--1.266
13 (--1.391

14 (-- 1.336
15 (-1.606
16 (-1.747
17 (-1.953

18 (-2.038
19 (-2.133
20 (-2.122

21 (-2.334
22 (-2.623

23 (-2.895
24 (-3.924
25 (-5.295

x 10-2, 4.653)
x 10-1, 5.480)
x 10-I, 9.237)

x 10-1, 1.086 x 10)
x 10-I 1.178 x 10)
x 10-2 1.447 x 10)

x 10-1 1.785 x 10)
x 10-1 2.522 x 10)

x 10-1 2.538 x 10)
x 10-1 2.643 x 10)

x 10-1 2.766 x 10)
x 10-1 3.458 x 10)

x 10-I 3.884 x 113)
x 10-1 3.919 x 10)
x 10-1 4.071 x 10)

X 10 -1 4.194 x 10)
x 10-1 4.634 x 10)

x 10-1 5.212 x 10)
x 10-1 5.639 x 10)

x 10-1 7.845 x 10)
X 10 -1 1.059 x 102)

0.2822
0.1122

0.0378
O1"

0.0204
0.0865
0.0675
0.0838
0.0417

0.0056
0.0059

0.0050
0.0055

0.0051
0.0058
0.0050

0.0050
0.0052

0.0052
0.0051

0.0050
0.0050
0.0051
0.0050
0.0050

Note: Reflects suboptimal studies; (k,i,a) = (0.5, 1,0.1), can.t = 0.6670.

ea = 0.9eAn_u.
aNot discernible from data.
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Fig. 7 Robustness condition (23) for suboptimal compensator K(s).

Satisfaction of condition (23) is shown in Fig. 7. The peak value

of the singular-value curve Fig. 7 is 0.562, indicating an additive sta-
bility robustness margin of about 44%.

The suboptimal compensator was also applied to the control of

the 50th-order system Gt, and an eigenvalue analysis performed.
Results are given in Table 3. The real parts of the eigenvalues for

modes 10-25 are not significantly changed from the corresponding

values of Table 1, indicating that the additive robustness condi-

tions are satisfied. The eigenvalue data gave two eigenvahies with

imaginary parts close to the imaginary part of openqoop mode 5.

Both are shown in Table 3. It is possible that the entry with the
largest real part is the closed-loop eigenvalue of mode 5 since this
mode is the least controllable and observable of the first nine modes.
No correlation could be made for modes 1 and 2.

Evaluation Model Simulations

The suboptimal compensator was applied to the control of the

full 86-mode evaluation phase 0 model subjected to a transient
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Fig. 9 Accelerometer 8 output time history for suboptimal compen-

sator g(s).

input disturbance. The simulation consisted of applying an exci-

tation input sequence for the first 9 s, allowing 1 s of free decay

and then applying a controllerat the 10-s mark for a totaldura-

tion of 30 s.The input sequence consisted of harmonic forces de-

signed to excite two pendulum modes (modes I and 3) and the

firsttwo bending modes (modes 7 and 8) using a single actua-

tor for each mode. Specifically,actuators I (mode 7), 2 (mode 8),

6 (mode 3), and 7 (mode I) were excited with signals of 1.474,

1.738, 0.155, and 0.147 Hz, respectively. No actuator dynamics

were considered.

The compensators were discretized ata sampling rateof 133 Hz.

This isthe same input sequence and sampling rate employed inex-

perimental investigations]2using the actual phase 0 structure.Fig-

ares 8 and 9 show output time historiesfor accelerometers 7 and

8 at the laser tower location.The suboptimal responses compare

favorably with other compensators t2']4designed with performance

issues in mind.

Concluding Remarks

A robust stabilization approach based on the use of normal-

ized coprime factor plant descriptions has been applied to produce

vibration-suppression controllers for a simulated model of the CSI

phase 0 evolutionary model. The study indicates that, when requir-

ing the compensators to satisfy the design objectives of stability

augmentation, robust stability to unmodeled dynamics appearing

as additive perturbations, and ,robustness to structured parametric

variations, the optimal robust compensators can be overly conserva-

tive with marginal stability augmentation, whereas the suboptimal

compensators are not. For the class of flexible-stn_cmre applica-

tions considered, the suboptimal version of the McFarlane-Glover

theory provides a viable approach for the computation of low au-

thority controllers providing robust stability augmentation. These

controllers may need to be supplemented with high authority loops

to meet additional performance objectives.
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